Wednesday, July 19, 2017

Condensate Return in a Steam System - Basic and Essential

food and dairy production plant
Efficient production of steam and return of condensate
are essential to the operation of this and many other
industrial operations.
Many industrial processes and plants, as well as commercial buildings, utilize steam in their operations. The generation and use of steam is one of the oldest industrial processes and is so well understood that it may be considered more of a utility than part an industrial process. Whatever the case, if your process or installation uses steam, then steam is a necessary input for successful operation. Keeping your steam system performing at capacity frees up time and resources for the more complex aspects of your work.

If steam is not consumed directly by the process as a component input, it is steam's heat of vaporization that is utilized by the operation. Efficient use of steam as a heating medium results in the conversion of vapor to liquid (water). Returning the liquid condensate back to the boiler for conversion to vapor again is a necessary step in the efficient operation of a closed loop system.

Condensate return systems are certainly not high technology, but keep in mind that a steam system may be the lifeblood of not just one, but many operations throughout a plant. Avoiding downtime in the steam system, of which the condensate return system is an integral part, ranks highly on the list of "Important Things for Plant Operations". Condensate return is critical.

Three general methods are employed to move the condensate from a collection vessel, a trap, to the feedwater side of the boiler. Gravity can be used when conditions permit. A pressure motive return arrangement uses steam pressure and a coordinated valve sequence to drive the condensate through the piping system and back to the boiler. Condensate pumps can also be employed as a positive means of moving condensate through the return piping system.

What are some strong attributes of a good and reliable condensate return pump?
  • Minimize or eliminate cavitation at high temperatures. Cavitation will impede pump performance and cause premature deterioration of pump and drive components.
  • Ability to handle a high load during cold starts through motor and pump design.
  • Design and configuration to handle high temperatures without deterioration of pump and motor.
  • Develop higher pressure at lower motor speeds for extended service life.
  • Avoidance of mechanical seals below water line.
  • Consider a single unit with dual pumps for handling high loads and extending service life.
Specifying and installing a solidly designed and built condensate return pump may require an investment of your time and consideration. The return on that investment will be reduced maintenance, repair, and downtime. hare your steam system challenges, from end to end, with knowledgeable application specialists. Combining your intimate operational knowledge and experience with their deep product knowledge and experience with many installations will yield a good solution.