Showing posts with label CTi Combustion. Show all posts
Showing posts with label CTi Combustion. Show all posts

Straight Talk on Why It May Be Best to Outsource a Project

Industrial process measurement and control entails projects, lots of projects. Equipment and instruments that are the life of our processes periodically need modification, replacement, major service or maintenance. Large scale work is generally contracted out for a variety of reasons, not the least of which is that the manpower, equipment, or license and certification requirements are beyond what the stakeholder (the company) may possess . But on smaller projects, an organization is often confronted with the decision of whether to do the work in house or contract it out. There are potential perils and rewards, regardless of the path you take.

Industrial site project manager
Do your project work in-house or contract it out?
I'm a guest writer on this blog, sharing my personal opinion on the subject. As additional disclosure, I share with you that the host of this blog, CTI Controltech, supports in-house project work by their customers with consulting, advice, and the provision of parts and equipment that they sell. The company also provides construction, engineering, and field services, making them a supporter of both in-house and contracted efforts by their customers.
The title of this article reveals my leanings on the issue of whether to outsource. Based upon my own project experience and observations of others in their pursuit of project completion, I am generally in favor of it.
With my bias exposed, prior to determining whether to use internal or external resources, still take the time to document some elemental project requirements.

  • What is the starting condition of the project? It is important to systematically assess the existing conditions, as they have a substantive impact on the scope of work needed to be accomplished to reach the point of completion.
  • What is to be the ending condition of the project, the definition of "completion"? There must be a defined ending condition that, once achieved, signals that the project is complete. Start with a general statement and add details garnered from various stakeholders. Keep in mind that the end condition will need to satisfy all stakeholders, so their input should be influential.
  • How much time is allowed to complete the work? This pertains to the needs of the company, not the time required to accomplish the task. If there is a deadline for the project, it must be known. An example would be completion of combustion efficiency upgrades prior to the effective date for a new emissions standard. It's not when the work can be done, but when it must be done
  • How much time will be required to complete the work? This may be difficult to ascertain at project inception, but some allowance should be assigned to planning, equipment and material procurement, actual hands-on trade and technical work, startup, testing, commissioning, and final documentation and training. This exercise will help you develop a more detailed picture of what is involved in getting the project completed and how long the timeline might be.
  • What special trade or technical skills will be required? You may need skilled or certified individuals to perform certain tasks. It is essential to know these resource requirements.
  • Does any of the work require a license or permit? Some extents of modification may require permits from a local jurisdiction and/or licensed trades to perform the work. New work often requires permits. Every jurisdiction has its own set of standards and requirements which must be considered.
Recall that I said "document" the project requirements. This is important for everyone involved. You want to prevent the "drifting" of performance benchmarks during the course of the project. This should be especially important if you are the one responsible for project completion. Injections of additional requirements midstream have the potential to destroy your carefully considered plans and result in delays, compromised quality, and dissatisfied stakeholders. If somebody wants a change, insist that they be realistic about its impact on the schedule.

There are three major decision factors to consider for in-house or outsourced projects?
  • Technical resources: Do you have people on staff with skills and qualifications that match those that will be needed to accomplish all the tasks comprising the project? That may include substantially more than the mechanics needed to install newly acquired parts and equipment. Consider engineering and design, the production of required documentation, procurement and scheduling of materials and equipment, proactive scheduling and coordination of the various tasks, and general project management.
  • Special equipment and tools: Are there any particular tools, instruments, or equipment that will be required on the project? Does the organization have these resources on hand? If not, how will they be procured, how long does it take, how much does it cost?
  • Available manpower: Are there enough personnel in the organization with the needed skills to complete the work AND is there enough slack available in their schedule to allow a sufficient amount of their time to be devoted to the project to achieve a timely completion? This is critical and applies to both the skilled trade labor and administrative manpower requirements.
An honest and thoughtful consideration of the three areas outlined will likely convince you that, unless the project is small in scale and simple in scope, outsourcing to a contractor with expertise and experience in the work to be accomplished is your best course of action. Sure, dealing with contractors can be difficult and merely outsourcing will not be a panacea for all the challenges presented by any project. However, if a contractor's responses to the three considerations outlined above are better than yours, there is probably advantage in hiring them. 

In the big picture, outsourcing can keep your company's resources available to perform more directly related to revenue generation, which is what they were likely hired for in the first place. Outsourcing draws comparatively little from the organization resource pool and, candidly, puts the bulk of the performance burden and the associated aggravation and stress on another organization that is probably better equipped to handled it than you. Done right, it can be a big win for everyone.




Industrial Burners and Safety Systems - Part Three

CTi Combustion

Igniters

Igniters provide proven ignition energy to immediately light-off the burner. They are permanently installed. Igniters are classified as follows by NFPA:

  • Class 3 special: High energy igniter (HEI) capable of directly igniting the main burner fuel. Generally consists of a spark-rod, and power pack to deliver the high voltage pulse train, and required cabling. Operation time of igniter is no longer than required to light-off burner, within maximum allowed trial-for-ignition time.
  • Class 3: Low capacity igniter applied particularly to gas and oil burners. Ignites the fuel input to the burner under prescribed light-off conditions. The range of class 3 igniters generally do not exceed 4 percent of full load burner input. Operation time of igniter is not longer than required to light-off the burner, within the maximum allowed trial-for-ignition time.
  • Class 2: Medium capability igniter applied particularly to gas and oil burners to ignite the fuel input to the burner under prescribed light-off conditions. The range of class 2 igniters generally is 4 to 10 percent of full-load burner input. Class 2 igniters may remain in operation to support ignition under low-load or adverse operating conditions. Class 2 igniters cannot be used to extend main burner turn-down range.
  • Class 1: High capacity igniter used to ignite the fuel input through the burner. Supports ignition under any burner light-off or operating conditions. Its location and capacity provide sufficient ignition energy at its associated burner to raise any credible combination of burner inputs of both fuel and air above the minimum ignition temperature. Tests are to be performed with this ignition system in service to verify that the igniter furnished meets the requirement of this class as specified in its design. Class 1 igniters can be used to extend the main burner’s turndown, where they are in service and flame if proved.

Industrial Burners and Safety Systems - Part Two

Combustion

Industrial Burners and BoilersCombustion (or burning) is a rapid combination of oxygen with fuel, resulting in a release of heat. Air (the oxygen source) is about 21% oxygen and 78% nitrogen by volume. Most fuels contain carbon, hydrogen, and sometimes sulphur. A simplification of combustion could be listed in the following three processes.

carbon + oxygen = carbon dioxide + heat
hydrogen + oxygen = water vapor + heat
sulphur + oxygen = sulphur dioxide + heat

These products of combustion are chemical compounds. They consist of molecules, combined in fixed proportions. Heat given off in any combustion process is excess energy which the molecules must release.

Stoichiometric combustion results when no fuel or air goes unused during the combustion process. Combustion with too much (excess) air is said to be lean or oxidizing. The excess air or oxygen plays no part in the combustion process. In fact, it reduces efficiency. Visually, excess air produces a short and clear flame. Combustion with too much fuel is called rich or reducing, producing incomplete combustion. This flame appears long and some- times smoky. The oxygen supply for combustion generally comes from ambient air.